Fit eine exponentielle Wachstumskurve und extrahieren Wachstumsrate-Parameter (in ggplot?)

stimmen
0

Im Moment habe ich die folgende Handlung erzeugt:

Daten:

   require(ggplot2)
just_growth_data=structure(list(ID = c(1L, 2L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 
25L, 27L, 28L, 29L, 30L, 31L, 33L, 34L, 35L, 37L, 38L, 39L, 40L, 
41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 
54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 
67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 
80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 
93L, 94L, 95L, 96L, 98L, 99L, 100L, 102L, 103L, 104L, 105L, 106L, 
107L, 108L, 109L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 
119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 
130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 139L, 140L, 141L, 
142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 
153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L, 163L, 
164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 
175L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 184L, 185L, 186L, 
187L, 188L, 189L, 191L, 192L, 193L, 194L, 195L, 197L, 198L, 199L, 
200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L, 210L, 
211L, 212L, 213L, 214L, 215L, 216L, 217L, 218L, 219L, 220L, 221L, 
222L, 223L, 224L, 225L, 226L, 227L, 228L, 229L, 231L, 232L, 233L, 
234L, 235L, 236L, 237L, 238L, 239L, 241L, 242L, 244L, 245L, 246L, 
247L, 248L, 249L, 250L, 251L, 253L, 254L, 255L, 257L, 258L, 259L, 
260L, 261L, 262L, 263L, 264L, 266L, 267L, 268L, 269L, 270L, 271L, 
272L, 273L, 274L, 275L, 276L, 277L, 278L, 279L, 280L, 281L, 282L, 
284L, 285L, 286L, 287L, 288L, 289L, 290L, 291L, 292L, 293L, 295L, 
296L, 297L, 298L, 299L, 300L, 301L, 302L, 303L, 304L, 305L, 306L, 
307L, 309L, 310L, 311L, 312L, 313L, 314L, 315L, 316L, 317L, 318L, 
319L, 320L, 321L, 322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L, 
330L, 331L, 333L, 334L, 335L, 336L, 337L, 338L, 339L, 340L, 341L, 
342L, 343L, 344L, 345L, 346L, 347L, 348L, 349L, 350L, 351L, 352L, 
353L, 354L, 355L, 356L, 357L, 358L, 359L, 360L, 361L, 362L, 363L, 
364L, 365L, 366L, 367L, 368L, 369L, 371L, 372L, 373L, 374L, 375L, 
376L, 377L, 378L, 379L, 380L, 381L, 382L, 383L, 384L, 385L, 386L, 
387L, 388L, 389L, 390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 
399L, 401L, 402L, 403L, 404L, 405L, 406L, 407L, 408L, 409L, 410L, 
411L, 412L, 413L, 414L, 415L, 416L, 417L, 418L, 419L, 420L, 421L, 
422L, 423L, 424L, 425L, 426L, 427L, 428L, 429L, 430L, 431L, 432L, 
433L, 434L, 435L, 437L, 438L, 439L, 440L, 441L, 442L, 443L, 444L, 
445L, 446L, 447L, 448L, 449L, 450L, 451L, 452L, 453L, 454L, 455L, 
456L, 457L, 458L, 459L, 460L, 461L, 462L, 463L, 464L, 465L, 467L, 
468L, 469L, 470L, 471L, 472L, 473L, 474L, 475L, 476L, 477L, 478L, 
479L, 480L, 481L, 482L, 483L, 484L, 485L, 486L, 487L, 488L, 489L, 
490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L, 498L, 499L, 500L, 
501L, 502L, 503L, 504L, 505L, 507L, 508L, 509L, 510L, 511L, 512L, 
513L, 514L, 515L, 516L, 517L, 518L, 519L, 520L, 521L, 522L, 523L, 
524L, 525L, 526L, 527L, 528L, 529L, 530L, 531L, 532L, 533L, 534L, 
535L, 536L, 537L, 538L, 539L, 540L, 541L, 542L, 543L, 544L, 545L, 
546L, 547L, 548L, 549L, 550L, 551L, 552L, 553L, 554L, 555L, 556L, 
557L, 558L, 559L, 560L, 561L, 562L, 563L, 564L, 565L, 566L, 567L, 
568L, 569L, 570L, 571L, 572L, 573L, 574L, 575L, 576L, 577L, 578L, 
579L, 580L, 581L, 582L, 583L, 584L, 585L, 586L, 587L, 588L, 589L, 
590L, 591L, 592L, 593L, 594L, 595L, 596L, 597L, 598L, 599L, 600L, 
601L, 603L, 604L, 605L, 606L, 607L, 608L, 609L, 610L, 611L, 612L, 
613L, 614L, 615L, 616L, 617L, 618L, 619L, 620L, 621L, 622L, 623L, 
624L, 625L, 626L, 627L, 628L, 630L, 631L, 632L, 633L, 634L, 635L, 
636L, 637L, 638L, 639L, 641L, 642L, 643L, 644L, 645L, 646L, 647L, 
648L, 649L, 650L, 651L, 652L), ColonyMass_At_Wrkr_Eclosion = c(NA, 
117L, NA, 53L, NA, 91L, 85L, 111L, 96L, NA, 112L, 90L, 112L, 
120L, 110L, 109L, NA, NA, 99L, 86L, 108L, 109L, 87L, 108L, 116L, 
137L, 108L, NA, NA, NA, 93L, NA, 96L, 98L, 87L, NA, 111L, NA, 
114L, NA, 11L, 123L, 113L, 130L, 134L, NA, NA, 96L, NA, NA, 15L, 
74L, NA, NA, 75L, 96L, 88L, NA, 122L, NA, 101L, 83L, 123L, 89L, 
85L, NA, 112L, 98L, 87L, 123L, 115L, 16L, 125L, NA, 91L, NA, 
85L, 76L, 122L, 95L, 113L, 116L, 102L, 132L, 11L, 105L, 112L, 
102L, 8L, NA, 113L, NA, 93L, 104L, 119L, 116L, 112L, 77L, NA, 
NA, 105L, 105L, 41L, 99L, NA, 113L, 120L, 130L, 98L, 122L, 118L, 
NA, NA, 97L, NA, NA, NA, 104L, 103L, 110L, 25L, 118L, 98L, 123L, 
NA, 97L, NA, 7L, 118L, NA, 82L, NA, 103L, 106L, 113L, NA, 115L, 
123L, 124L, 38L, 26L, 102L, 90L, NA, 59L, 102L, 82L, 120L, 113L, 
116L, 117L, 116L, 62L, 93L, 91L, 102L, 121L, 120L, NA, 111L, 
97L, 63L, 109L, 113L, 102L, 125L, 102L, 111L, 123L, 52L, 72L, 
NA, NA, 116L, NA, 81L, 52L, 52L, NA, 105L, 123L, 87L, NA, 136L, 
108L, NA, 120L, 122L, NA, NA, 126L, NA, 47L, 111L, 118L, NA, 
NA, NA, NA, 109L, NA, 99L, 106L, 53L, 102L, 77L, 99L, NA, NA, 
NA, 114L, NA, 111L, NA, 113L, NA, 76L, 114L, NA, 120L, 113L, 
97L, 134L, 98L, 118L, 75L, 109L, 124L, 108L, NA, 124L, NA, 65L, 
100L, NA, NA, 126L, 11L, 97L, 76L, NA, NA, 106L, 110L, 3L, 116L, 
NA, NA, 135L, 96L, 101L, NA, 92L, NA, NA, 118L, NA, 105L, 15L, 
129L, 128L, 102L, NA, 92L, 100L, NA, NA, 71L, 103L, NA, 113L, 
NA, NA, 63L, NA, 88L, 83L, 106L, 117L, 49L, NA, NA, 61L, 79L, 
NA, 91L, 102L, NA, 93L, NA, NA, NA, 87L, 126L, 99L, NA, NA, 100L, 
116L, 103L, 87L, 37L, NA, 112L, NA, NA, 18L, NA, 94L, NA, NA, 
NA, 117L, 102L, 62L, 96L, NA, 87L, 8L, NA, 86L, 61L, NA, 68L, 
117L, 89L, NA, 90L, NA, 104L, 94L, 102L, NA, 105L, 107L, 62L, 
130L, 99L, 111L, NA, 106L, 98L, NA, 140L, 88L, 94L, NA, 122L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA), ColonyMass_4wksLater = c(NA, 571L, NA, NA, NA, 736L, 
NA, NA, NA, NA, NA, 438L, NA, NA, 711L, NA, NA, NA, 537L, NA, 
844L, NA, NA, NA, 560L, 561L, NA, NA, NA, NA, 594L, NA, NA, 457L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 714L, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 417L, NA, NA, NA, 701L, NA, 
NA, NA, 25L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 866L, NA, NA, 
291L, NA, 659L, 354L, 743L, NA, NA, 696L, NA, NA, NA, NA, NA, 
NA, NA, 518L, NA, NA, NA, NA, NA, NA, 907L, 27L, NA, NA, 625L, 
NA, NA, 957L, 804L, NA, NA, NA, 650L, NA, NA, NA, NA, NA, NA, 
NA, 699L, 632L, NA, NA, 518L, NA, NA, NA, NA, NA, NA, 527L, 541L, 
NA, NA, NA, NA, NA, 448L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, 382L, NA, 431L, NA, 620L, NA, 296L, NA, 532L, 
NA, 485L, NA, NA, NA, NA, NA, NA, 153L, NA, NA, NA, NA, 23L, 
NA, NA, NA, 606L, NA, NA, NA, 550L, 766L, NA, 426L, 786L, NA, 
NA, 289L, NA, 119L, 327L, NA, NA, NA, NA, NA, NA, NA, 602L, NA, 
20L, NA, NA, NA, NA, NA, NA, 152L, NA, 592L, NA, NA, NA, 1235L, 
197L, NA, 442L, NA, NA, 558L, NA, NA, NA, NA, 818L, NA, NA, NA, 
NA, NA, NA, NA, NA, 783L, NA, 519L, NA, NA, NA, 856L, 609L, NA, 
397L, NA, NA, 1195L, NA, 473L, NA, NA, NA, NA, 370L, NA, NA, 
3L, 561L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 783L, NA, NA, 
NA, NA, NA, NA, 537L, NA, NA, NA, NA, NA, 937L, NA, 696L, NA, 
NA, 859L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 902L, 430L, NA, 
11L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 354L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, 682L, NA, NA, NA, NA, NA, 134L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 670L, NA, NA, NA, NA, NA, 
NA, 537L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA), ColonyMass_2mnthsLater = c(NA, 445L, NA, 
NA, NA, 1817L, NA, NA, NA, NA, NA, 2683L, NA, NA, 1775L, NA, 
NA, NA, 429L, NA, 77L, NA, NA, NA, 279L, 23L, NA, NA, NA, NA, 
NA, NA, NA, 111L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 70L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 71L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
249L, NA, NA, NA, NA, 1249L, 636L, 710L, NA, NA, 27L, NA, 50L, 
NA, NA, NA, NA, NA, 531L, NA, NA, NA, NA, NA, NA, 63L, NA, NA, 
NA, 416L, NA, NA, 400L, 902L, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, 116L, NA, NA, NA, 674L, NA, NA, NA, NA, NA, NA, 1439L, 
305L, NA, NA, NA, NA, NA, 93L, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, 2L, NA, 1107L, NA, 13L, NA, 201L, NA, 470L, 
NA, 184L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, 72L, NA, NA, NA, 2727L, 33L, NA, 121L, 643L, NA, NA, 
168L, NA, 160L, NA, NA, NA, NA, NA, NA, NA, NA, 1732L, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 666L, 60L, NA, 
128L, NA, NA, 140L, NA, NA, NA, NA, 15L, NA, NA, NA, NA, 1726L, 
NA, NA, NA, NA, NA, 1966L, NA, NA, NA, 77L, 76L, NA, 199L, NA, 
NA, 54L, NA, 377L, NA, NA, NA, NA, NA, NA, NA, NA, 738L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 1422L, NA, NA, NA, NA, NA, 
NA, 695L, NA, NA, NA, NA, NA, 15L, NA, 1058L, NA, NA, 680L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 534L, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, 850L, NA, NA, NA, NA, NA, 11L, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, 51L, NA, NA, NA, NA, NA, NA, 146L, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), .Names = c(ID, 
ColonyMass_At_Wrkr_Eclosion, ColonyMass_4wksLater, ColonyMass_2mnthsLater
), class = data.frame, row.names = c(NA, -622L))

Code:

require(reshape)
require(ggplot2)
data.m <- melt(just_growth_data, id.vars=ID)
ggplot(data.m, aes(x=variable, y=value, group=ID)) + 
  geom_line() + 
  geom_point() + 
  ylab(Weight (mg)) +
  xlab(Time)

Ich versuche , eine Wachstumsrate (unter der Annahme , exponentielles Wachstum) für jedes meiner Kolonien abzuleiten. Ich denke , dass ein Weg , dies zu tun wäre:

  1. passen exponentielle Kurven zu jedem Datenpunkt der Kolonie und dann
  2. Extrakt aus der Gleichung der Kurve, die die Wachstumsrate.

Es wurde empfohlen, dass ich mit nls versuchen, dies zu erreichen oder sogar, dass die exponentiellen Kurve der Parameter ganz einfach von nur drei Datenpunkten abgeleitet werden können.

Leider bin ich nach wie vor schlecht gerüstet, diesen Rat zu nehmen: Ich weiß nicht, wie eine der beiden zu tun.

Vielen Dank!

Veröffentlicht am 23/07/2012 um 05:15
quelle vom benutzer
In anderen Sprachen...                            


1 antworten

stimmen
2

Schlagen Sie zu Fuß, bevor Sie laufen. Wissen Sie, wie eine gerade Linie zu einem Satz von Punkten in R passen? Wissen Sie, wie eine logistische Regression zu tun? Sagen Sie uns, was Sie wissen - nicht nur Ihre Daten-Dump und sagen: „Wie kann ich X tun?“.

Schauen Sie sich die Hilfe für die Film- und GLM-Funktionen. Ist es nicht pervers scheint eine grafische Funktion (geom_smooth) zu verwenden und dann versuchen, die Zahlen raus? Sicherlich seine logischer, den Sitz zu berechnen, so dass Sie die Zahlen haben und zeichnen sie dann?

Es ist ein bisschen wie Windows vs Command Line ...

Beantwortet am 23/07/2012 um 07:54
quelle vom benutzer

Cookies help us deliver our services. By using our services, you agree to our use of cookies. Learn more